Kinetics of Thermal Degradation of Nanometer Calcium Carbonate/Linear Low-Density Polyethylene Nanocomposites

Xinxin Cao,^{1,2} Jungang Gao,¹ Xin Dai,² Yufei Liu,² Xiaofang He²

¹College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China ²School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China

Received 20 October 2011; accepted 6 February 2012 DOI 10.1002/app.36949 Published online in Wiley Online Library (wileyonlinelibrary.com).

ABSTRACT: To improve the thermal properties of linear low-density polyethylene (LLDPE), the CaCO₃/LLDPE nanocomposites were prepared from nanometer calcium carbonate (nano-CaCO₃) and LLDPE by melt-blending method. A series of testing methods such as thermogravimetry analysis (TGA), differential thermogravimetry analysis, Kim-Park method, and Flynn-Wall-Ozawa method were used to characterize the thermal property of CaCO₃/LLDPE nanocomposites. The results showed that the CaCO₃/LLDPE nanocomposites have only one-stage thermal degradation process. The initial thermal degradation temperature T_0 increasing with nano-CaDO₃ content, and stability of LLDPE change better. The thermal degradation activation energy (E_a) is different for different nano-CaCO₃ content. When the mass fraction of nano-CaCO₃ in nanocomposites is up to 10 wt %, the nanocomposite has the highest thermal degradation E_a , which is higher (28 kJ/mol) than pure LLDPE. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci 000: 000–000, 2012

Key words: LLDPE; nano-CaCO₃; nanocomposite; thermal degradation

INTRODUCTION

Linear low-density polyethylene (LLDPE) with excellent flexibility and ductility is widely used to manufacture utensils, pipes, cables, and so forth.^{1,2} However, the application of LLDPE has been limited by its main disadvantages such as less rigidity, poor heat resistance, and low softening point. Therefore, the thermal degradation of LLDPE has received considerable attention in the literature.^{3,4} As can be learned from previous studies, the studies were mainly concentrated on blends of polyethylene and other polymers, for instance, high-density polyethyl-ene (HDPE)/LLDPE blends.⁵ There are also some reports on polyethylene modified by particles such as wood-LLDPE composites, multiwalled carbon nanotubes/LLDPE nanocomposites, and LLDPE/ layered double hydroxide nanocomposites.^{6–8} In addition, Gorghiu et al.9 had reported the effect of metals (Al, Zn, Ti, Mo, Mn, Fe, and Cu) on thermal degradation of polyethylenes. So far, not much

attention has been paid to the effect of the chemical composition, content, and stability of nano-CaCO₃ on the overall thermal stability of LLDPE.

The nano-CaCO₃ as a kind of inorganic nanometer particle, because of its advantages of less surface defects, more unpaired atoms, and large surface area, has large possibility of physically or chemically combining with LLDPE and can make influence of polyethylene thermal decomposition behavior because of single particle effect. In this work, the CaCO₃/LLDPE nanocomposite was prepared; the kinetics of thermal degradation processes was investigated by the Kim-Park and the Flynn-Wall-Ozawa methods; and the effects of nano-CaCO₃ on the thermal degradation processes of LLDPE were discussed. The results showed that the initial degradation temperature of CaCO₃/LLDPE nanocomposites rises with increasing the nano-CaCO₃ content, and when the mass fraction of nano-CaCO₃ is up to 10 wt %, it has the highest thermal degradation activation energy E_{a} , which is higher (28 kJ/mol) than pure LLDPE. The stability of LLDPE can be increased by adding nano-CaCO₃.

THEORETICAL BACKGROUND

According to the nonisothermal dynamics theory and Arrhenius experience equation, the dynamic equation for degradation of materials is given as follows:

Correspondence to: J. Gao (gaojg@hbu.edu.cn).

Contract grant sponsor: School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China.

Journal of Applied Polymer Science, Vol. 000, 000–000 (2012) © 2012 Wiley Periodicals, Inc.

Figure 1 Relationships of T_0 and nano-CaCO₃ content at different heating rates.

$$\frac{d\alpha}{dt} = A(1-\alpha)^n \exp(-\frac{E_a}{RT}).$$
(1)

When the heating rate of sample is constant, due to $\beta = dT/dt$, the above equation can be changed into the following equation:

$$\frac{d\alpha}{dT} = \frac{A}{\beta} (1 - \alpha)^n \exp(-\frac{E_a}{RT}).$$
(2)

Here, *A* is the pre-exponential factor, E_a is the activation energy, and *R* is the gas constant. α , β , *n*, and *T* are the weight loss rate or conversion rate, heating rate, reaction order, and absolute temperature, respectively.

According to Eq. (2), using different mathematical processing methods, we can get different thermal degradation dynamics calculation method. The thermal decomposition kinetics of $CaCO_3/LLDPE$ nanocomposites was evaluated by two different techniques: Kim-Park method¹⁰ and Flynn-Wall-Ozawa method.^{11,12}

KIM-PARK METHOD

The thermal degradation kinetics equation formulated by Kim-Park is as follows:

$$\ln \beta = \ln A + \ln \left(\frac{E_a}{R}\right) + \ln \left[1 - n + \frac{n}{0.9444}\right] - 5.3305 - 1.0516 \left(\frac{E_a}{RT_{\rm md}}\right), \quad (3)$$

where $n = (1-\alpha^m)/[(RT_{md}^2) (d\alpha/dt)]$, T_{md} is the largest weight loss temperature, and α^m is the conversion of weight loss at that time. E_a can be obtained

from the slope of ln β versus $1/T_{md}$, and ln A can be calculated from the intercept value.

FLYNN-WALL-OZAWA METHOD

Flynn-Wall-Ozawa method is one of the integral methods that can determine the activation energy without the knowledge of reaction order and differential data of thermogravimetry (TG).

$$\lg \beta = \lg(\frac{AE_a}{RG(\alpha)}) - 2.315 - 0.4567 \frac{E_a}{RT}.$$
 (4)

Here, *A* and *R* are constants for a particular conversion and $G(\alpha)$ is a constant. Hence, the value of E_a can be computed by Ozawa's method for any particular decomposition degree or conversion rate, α , being determined from the linear dependence plot of ln β versus 1/T at different heating rates without the knowledge of the reaction order.

EXPERIMENTAL

Materials and samples

Nano-CaCO₃ was supplied by Shanxi Lanhua Huaming Nano Material, China, with specifications as follows: average diameter is 50–80 nm, the model number is sp-200, and purity >95%. LLDPE was supplied by Sinopec, China, with melt flow index of 2.0 g/10 min at 120°C.

Preparation of nano-CaCO₃/LLDPE nanocomposites

The CaCO₃/LLDPE nanocomposites were prepared on a two-roll mill [X(S) K-100, Jiangsu Tianyuan Test Equipment, China] at 110–125°C with a screw speed of 20 r/min. After preparation, the samples were

Figure 2 Relationships of T_{md} and nano-CaCO₃ content at different heating rates.

Physical Parameters of TG Curves				
Samples	$\beta (^{\circ}C/min)^{a}$	$T_0 (^{\circ}C)^{b}$	$T_{\rm md} (^{\circ}{\rm C})^{\rm c}$	$R_{\rm md} (\%/{\rm min})^{\rm d}$
No. 0	5	442.46	467.33	-0.0746
	10	454.02	474.36	-0.0800
	15	461.91	483.53	-0.1187
	20	463.52	490.46	-0.1503
No. 2	5	445.45	467.38	-0.0411
	10	457.87	475.15	-0.0810
	15	458.26	486.53	-0.0815
	20	464.11	492.85	-0.1273
No. 5	5	443.21	469.41	-0.0449
	10	456.83	482.95	-0.0926
	15	461.36	487.82	-0.1009
	20	466.98	492.83	-0.1584
No. 10	5	444.12	471.13	-0.0761
	10	455.82	480.88	-0.0758
	15	457.63	483.58	-0.1803
	20	463.42	491.48	-0.1976
No. 15	5	444.39	471.65	-0.0429
	10	453.67	483.38	-0.0619
	15	464.49	492.84	-0.1129
	20	464.78	497.96	-0.1087
No. 20	5	444.47	471.65	-0.0454
	10	458.26	484.72	-0.0481
	15	467.53	493.37	-0.1068
	20	470.54	498.70	-0.1250

TABLE I

 a β is the heating rate of sample.

^b T_0 is the initial decomposition temperature (5% weight loss).

 $T_{\rm md}$ is the largest weight loss temperature.

 $^{d}R_{md}$ is the correlation coefficient at the maximal heating rate.

melt pressed at 120°C and subsequently cooled with pressure under 60°C to remove the internal stress. The content of nano-CaCO₃ in composites was 0, 2, 5, 10, 15, and 20 wt %, and they were marked as No. 0, No. 2, No. 10, No. 15, and No. 20, respectively.

Thermogravimetric testing

The thermal degradation analysis of TG and TGA was investigated by using a SETARAM Evolution 24

Figure 4 Kim-Park plots of ln β versus 1/T at maximal decomposition rate.

operated under argon flow rate of 20 mL/min. About 15 mg of samples were heated from 25 to 800°C at constant heating rates of 5, 10, 15, and 20°C/min.

RESULTS AND DISCUSSION

Thermogravimetric analysis

Thermogravimetric analysis of all samples was investigated. Figure 1 shows the relationships of initial decomposition temperature T_0 (5% weight loss) and nano-CaCO₃ content at the heating rates of 5, 10, 15, and 20°C/min, respectively. Figure 2 shows the relationships of maximal weight loss rate temperature T_{md} and nano-CaCO₃ content at same different heating rates, respectively. As seen from Figures 1 and 2, T_0 and T_{md} all increase with increasing heating rates for different nano-CaCO3 content. The physical parameters of TG testing of six samples, which has different nano-CaCO₃ content, are shown in Table I. As seen from Table I, the initial decomposition temperature T_0 , the largest

Figure 3 TG and DTG curves of CaCO₃/LLDPE nanocomposites.

Figure 5 Plots of E_a versus nano-CaCO₃ content at maximal decomposition rate.

weight loss rate, and the maximal temperature of weight loss rate T_{md} all rise with increasing nano-CaCO₃ content, and they are higher than the pure LLDPE. These results indicate that the thermal stability of LLDPE has been increased due to the addition of nano-CaCO₃.

TG and differential thermogravimetry (DTG) curves of No. 0 and No. 10 are shown in Figure 3, and all TG curves at different heating rates are smooth against *S* curves. At constant temperature, the higher heating rate, the bigger weight loss rate is, and every DTG curve has only a single weight loss peak. The $T_{\rm md}$ increases with the heating temperature rate. The other samples (No. 2, No. 15, and No. 20) all have the same phenomenon as No. 0 and No. 10. The T_0 and $T_{\rm md}$ all rise with increasing heating rate, which is relative with temperature delaying of samples at faster heating rate.

Thermal degradation activation energy

The followings are discussions on thermal degradation activation energies (E_a) obtained from two different methods. The Kim-Park method only can be used to calculate activation energy of the biggest weight loss rate. The plots of ln β versus 1/T are shown in Figure 4. The thermal degradation E_a is calculated by the Kim-Park method, and the relationships of E_a versus nano-CaCO₃ content are shown in Figure 5 and Table II. The line correlation coefficient r is all in the range of 0.9797–0.9998. It can be seen from Figure 5 and Table II that the E_a has the highest value when the nano-CaCO₃ content is 10%. It can be illustrated that the thermal degradation reaction of sample at this nano-CaCO₃ content will be more difficult than other. The T_{md} in whole process is as same as TGA when the nano-CaCO₃ content is kept constant, and it increases along with the increasing heating rates.

The Flynn-Wall-Ozaws method can be used to calculate thermal degradation E_a at any conversions in the thermal analysis process. Figure 6 shows the plots of ln β versus 1/T for No. 0 and No. 10 at different α by the Flynn-Wall-Ozawa method. The corresponding thermal degradation E_a of nanocomposites could be obtained according to the slope of fitting line, and the results are listed in Table III. Figure 7 shows the relationships of thermal degradation E_a and nano-CaCO₃ contents in the nanocomposites at different weight loss rates or conversion rate α . As seen from Figure 5, the thermal degradation E_a of samples all changed along with nano-CaCO₃ contents. This result is the same as by the Kim-Park method (Table II). It explains that the addition of nano-CaCO₃ affects the thermal degradation E_a of nanocomposites and that the thermal degradation E_a is the biggest when the nano-CaCO₃ content (wt %) is 10%.

As seen from Tables II and III and Figure 7, the thermal degradation E_a of No. 0 is higher than No. 2 sample, this is due to the fact that pure LLDPE has a higher crystallinity, which has a hindered role for molecular degradation of LLDPE. After the addition of nano-CaCO₃ into LLDPE, the part of LLDPE crystallinity is destroyed, and therefore, the thermal

TABLE II Kinetic Results Calculated Using the Kim-Park Method

Samples	$\beta^d = 5^\circ C/min$	$\beta = 10^{\circ}C/min$	$\beta = 15^\circ C/min$	$\beta = 20^{\circ}C/min$	E_a (kJ/mol) ^b	r^{c}
No. 0	467.33	474.36	483.53	490.46	100.51	0.9797
No. 2	467.38	475.15	486.53	492.85	94.21	0.9806
No. 5	469.41	482.95	487.82	492.83	108.31	0.9947
No. 10	471.13	480.88	483.58	491.48	128.48	0.9817
No. 15	471.65	483.38	492.84	497.96	96.21	0.9984
No. 20	471.65	484.72	493.37	498.70	94.53	0.9998

 $^{a}_{md}$ T_{md} is the largest weight loss temperature.

^b E_a is the thermal degradation activation energy.

 $^{\rm c}$ *r* is the regression coefficient.

^d β is the heating rate of sample.

Figure 6 Flynn-Wall-Ozawa plots of CaCO₃/LLDPE nanocomposites for five different conversions.

degradation E_a is decreased. However, with increasing the nano-CaCO₃ content, the thermal stability of LLDPE is improved, and it is attributed to the fact that the stronger interaction and hybrid between LLDPE molecules and nano-CaCO₃ confined the ac-

TABLE III				
E _a Calculated Using Flynn-Wall-Ozawa	Method			

Samples	α^{a}	$E_a (kJ/mol)^b$	r ^c
No. 0	0.05	229.16	0.9906
	0.2	260.68	0.9997
	0.4	224.62	0.9975
	0.6	283.12	0.9964
	0.8	257.42	0.9950
No. 2	0.05	211.60	0.9867
	0.2	225.45	0.9976
	0.4	229.82	0.9994
	0.6	216.37	0.9991
	0.8	283.67	0.9973
No. 5	0.05	219.56	0.9949
	0.2	202.19	0.9998
	0.4	246.42	0.9999
	0.6	229.02	0.9997
	0.8	215.45	0.9999
No. 10	0.05	269.36	0.9857
	0.2	213.29	0.9647
	0.4	204.99	0.9834
	0.6	251.33	0.9957
	0.8	231.11	1.0000
No. 15	0.05	215.84	0.9648
	0.2	256.60	0.9898
	0.4	209.58	0.9945
	0.6	217.00	0.9958
	0.8	261.32	0.9939
No. 20	0.05	230.11	0.9958
	0.2	213.90	0.9979
	0.4	233.20	0.9983
	0.6	194.53	0.9974
	0.8	179.77	0.9912

^a α is the weight loss rate or conversion rate.

^b E_a is the thermal degradation activation energy.

^c r is the regression coefficient.

tivity of macromolecule chains and suppressed the emanation of small molecule effectively when degradation reaction originated, resulting in the decrease of degradation velocity of materials. Therefore, the heat stability and thermal degradation E_a of materials are increased. However, when the content of nano-CaCO₃ is over 10 wt %, the thermal degradation E_a is decreased with increasing nano-CaCO₃ content. This is due to the fact that the crystallinity of LLDPE will have a larger decrease under this condition.

It should be noted that this study has examined only the thermal property of CaCO₃/LLDPE nanocomposites. Other properties such as mechanical strength, heat of fusion, rheology, and flame resistance will be reported in the later investigation. Notwithstanding its limitation, this study suggests that the thermal stability of LLDPE has been improved by the addition of nano-CaCO₃. This is of great significance for us and others in the research of thermal degradation kinetics of LLDPE and other polymers.

Figure 7 Plots of E_a calculated using Flynn-Wall-Ozawa method with α at different nano-CaCO₃ content.

CONCLUSIONS

In this work, the CaCO₃/LLDPE nanocomposites can be prepared from nano-CaCO₃ and LLDPE by melt-blending method. The thermogravimetry analysis (TGA) and differential thermogravimetry (DTG) analysis can be used to test the thermal properties of CaCO₃/LLDPE nanocomposites. The thermal analysis results show that the Kim-Park and the Flynn-Wall-Ozawa methods may be used to analyze the thermal degradation data. The CaCO₃/LLDPE nanocomposites have one-stage degradation process, and nano-CaCO₃ can increase the initial thermal degradation temperature T_0 and thermal stability of LLDPE. The addition of nano-CaCO₃ has a great effect on the thermal degradation activation energy E_a of LLDPE. When the mass fraction of nano-CaCO₃ in nanocomposites is up to 10%, it has the highest E_a , which is higher (28 kJ/mol) than pure LLDPE.

The authors acknowledge all associates for supporting this research work.

References

- 1. Lu, H. D.; Hu, Y.; Li, M.; Chen, Z. Y.; Fan, W. C. Compos Sci Technol 2006, 66, 3035.
- 2. Weon, J. Polym Degrad Stab 2010, 95, 14.
- Park, J. W.; Oh, S. C.; Lee, H. P.; Kim, H. T.; Yoo, K. O. Polym Degrad Stab 2000, 67, 535.
- 4. Cho, Y.; Shim, M.; Kim, S. Mater Chem Phys 1998, 52, 94.
- 5. Ojeda, T.; Freitas, A.; Birck, K.; Dalmolin, E.; Jacques, R.; Bento, F.; Camargo, F. Polym Degrad Stab 2011, 96, 703.
- 6. Shebani, A. N.; Reenena, A. J.; Meincken, M. Thermochim Acta 2009, 481, 52.
- 7. Qiu, L. Z.; Chen, W.; Qu, B. J. Polymer 2006, 47, 922.
- Bocchini, S.; Frache, A.; Camino, G.; Claes, M. Eur Polym J 2007, 43, 3222.
- 9. Gorghiu, L. M.; Jipa, S.; Zaharescu, T.; Setnescu, R.; Mihalcea, I. Polym Degrad Stab 2004, 84, 7.
- 10. Kim, S.; Park, J. K. Thermochim Acta 1995, 264, 137.
- 11. Ozawa, T. Bull Chem Soc Jpn 1965, 38, 1881.
- 12. Flynn, J. H.; Wall. L. A. J Polym Sci Part B: Polym Lett 1966, 4, 323.